Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Cytotherapy ; 25(6 Supplement):S267-S268, 2023.
Article in English | EMBASE | ID: covidwho-20240749

ABSTRACT

Background & Aim: Gene therapies has become recognized for its remarkable clinical benefits in a variety of medical applications, in particular recent approval of an Ad vector-based COVID-19 vaccines have attracted recent global attention. Here, we present key considerations for GMP compliant process development for Coxsackie virus type B3 (CVB3), an oncolytic virus designed for clinical trial in triple-negative breast cancer. Methods, Results & Conclusion(s): CVB3 is a non-enveloped, linear single-strand RNA virus with a size of approximately 27-33 um in diameter. From the initial type using the zonal rotor centrifuge to the advanced type using the tangential flow filtration system and ion chromatograph, we considered the points of the design concept in constructing the manufacturing process. The final design system is constructed as a closed and single-use manufacturing system in which all processes from upstream large-scale cell culture to downstream target purification and concentration steps. In brief, HEK293 cell suspension extended in 3L serum-free medium infected with CVB3, up to 3.6 times 10 to 7 of TCID50 /mL before going to downstream steps, made total 150 mL of final products as 8.43 times 10 to 7 of TCID50/mL concentration. Although further quality control challenges remain that is removal of product-related impurities such as human cellular proteins and residual DNA/RNA to increase virus purity, this concept is effectively applicable even for other types of viruses as GMP manufacturing processes, and would be also important for technology transfer to future commercial production.Copyright © 2023 International Society for Cell & Gene Therapy

2.
EBioMedicine ; 92: 104608, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2326835

ABSTRACT

BACKGROUND: SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS: A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS: We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION: Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING: Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , RNA, Viral , Prospective Studies , Lung
3.
Chemical Engineering Journal ; 464, 2023.
Article in English | Scopus | ID: covidwho-2303685

ABSTRACT

An accurate, convenient, and rapid diagnostic platform, which can be applied in facility-limited or point-of-care (POC) settings, is essential to help prevent the spread of infectious diseases and enable the most effective treatment to be selected. In this study, we describe the development of a new isothermal molecular diagnostic system named multipurpose advanced split T7 promoter-based transcription amplification (MASTER) for the rapid and ultrasensitive detection of various pathogens containing single-stranded RNA and double-stranded DNA. MASTER produces a large number of RNA amplicons in the presence of target pathogens, which generate fluorescence or colorimetric signals based on light-up RNA aptamers or lateral flow assays. Implementing MASTER at 37 °C for<1 h achieved the detection of a single copy per reaction without cross-reactivity. Moreover, the testing of 40 clinical samples revealed that MASTER exhibited excellent accuracy with 100% sensitivity and specificity for SARS-CoV-2 diagnosis. Furthermore, a one-pot MASTER system capable of accelerating practical applications was demonstrated, indicating that the MASTER system is a promising platform for the effective surveillance of various pathogens. © 2023 Elsevier B.V.

4.
Coronaviruses ; 2(6) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2262227

ABSTRACT

Background: A novel coronavirus disease, 2019-nCoV (COVID-19), was reported first in Wuhan, the capital of Hubei, China, in late December 2019 and subsequently reached pandemic level affecting around 213 countries. As of 24th May 2020, the total number of positive cases confirmed is 5,446,514 and 344,754 death reports worldwide. COVID-19 infection causes pneumonia-like severe respiratory infection and acute lung failure. Severe acute respiratory syndrome coron-avirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA beta coronavirus that is a confirmed causative agent of COVID-19. SARS-CoV-2 may use angiotensin-converting enzyme 2 (ACE2), unlike the receptor utilized by SARS-CoV (emerged in 2002) to infect humans. People with a history of hypertension, chronic obstructive pulmonary disease, diabetes, cardiovascular disease are more susceptible to SARS-CoV-2. Objective(s): The purpose of this review was to help the society to distinguish and deal with SARS-CoV-2, and make available a reference for forthcoming studies. Method(s): Recently, diagnostic primer sets on the SARS-CoV-2 genome have been identified. The receptor-binding domain of SARS-COV-2 highlighted the mode by which beta-CoV recognizes ACE2. Various diagnostic tools are available to differentiate and identify SARS-CoV-2 infection as RT-PCR, antigen detection assay, and antibody detection assay. Different strategies have been employed to control the SARS-CoV-2, considering various drug targets like the main protease (3-CLPro), papain-like protease (PLpro), helicase (NSP13), RNA dependent RNA polymerase (RdR-p), and viral envelope (E) protein. Conclusion(s): In the present review, we have updated details of transmission, pathogenesis, genome structure, diagnostic criteria, clinical characteristics, therapeutics, and vaccine development of the SARS-CoV-2 infection, which may be significant in the control and response to the COVID-19 out-break.Copyright © 2021 Bentham Science Publishers.

5.
Investigacion Clinica (Venezuela) ; 64(1):108-122, 2023.
Article in English | EMBASE | ID: covidwho-2254138

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that belongs to the group of seven coronaviruses that affect humans, and its infection causes the COVID-19 disease. The association between the COVID-19 condition and risk factors of neurological manifestations is unclear to date. This review aims to update the main neurological manifestations associated with SARS-CoV-2 disease. First, we present the hypothesis of the neuroinvasion mechanisms of SARS-CoV-2. Then, we discuss the possible symptoms related to patients with COVID-19 infection in the central and peripheral nervous systems, followed by the perspectives of diagnosis and treatment of possible neurological manifesta-tions. The hypothesis of the neuroinvasion mechanism includes direct routes, as the virus crosses the blood-brain barrier or the ACE2 receptor pathway role, and indirect pathways, such as malfunctions of the immune system and vascular system dysregulation. Various studies report COVID-19 consequences, such as neuroanatomic alterations and cognitive impairment, besides peripheral condi-tions, such as anosmia, ageusia, and Guillain Barre Syndrome. However, the het-erogeneity of the studies about neurologic damage in patients after COVID-19 infection precludes any generalization of current findings. Finally, new studies are necessary to understand the adequate diagnosis, therapeutic method of early treatment, and risk group of patients for neurological manifestations of COVID-19 post-infection.Copyright © 2023, Instituto de Investigaciones Clinicas. All rights reserved.

6.
Microbiology Research ; 12(3):663-682, 2021.
Article in English | EMBASE | ID: covidwho-2253973

ABSTRACT

Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.Copyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

7.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2272449

ABSTRACT

Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.


Subject(s)
Influenza A virus , RNA, Viral , Humans , RNA, Viral/genetics , Cryoelectron Microscopy , Ribonucleoproteins/genetics , Viral Proteins/genetics , Nucleocapsid/metabolism , Influenza A virus/genetics
8.
Kathmandu University Medical Journal ; 18(2-70 COVID-19 Special Issue):59-63, 2020.
Article in English | EMBASE | ID: covidwho-2228142

ABSTRACT

COVID-19 requires unprecedented mobilization of the health systems to prevent the rapid spread of this unique virus, which spreads via respiratory droplet and causes respiratory disease. There is an urgent need for an accurate and rapid test method to quickly identify many infected patients and asymptomatic carriers to prevent virus transmission and assure timely treatment of the patients. This article aims as an outcome of review of the evidence on viral load and its virulence of SARS-CoV2,so that it will help in further understanding the fact useful for investigating and managing the COVID-19 cases. A search of available evidence was conducted in pub-med "COVID-19 viral load and virulence" and its associated characters world-wide and Google Scholar to capture the most recently published articles. The WHO and Centre for Disease Control and Prevention (CDC) database of publications on novel coronavirus were also screened for relevant publications. s of 55 articles were screened by two authors and 15 were included in this study based on the inclusion criteria. SARS-coV2, the causative agent of COVID-19 falls under the coronavirus family but it has higher infectivity compared to SARS and MERS with higher reproduction numbers(Ro). Virulence has been found to be different throughout the world,however lower compared to SARS and MERS,till date. The most common clinical features have been found to be cough and fever. RT - PCR remains the most sensitive and specific method for the diagnosis of COVID-19 although it is time consuming, costly and requires highly skilled human resources. Hence, newer modalities like RT-LAMP can be alternative for point of care diagnosis as this is both cost effective and requires less skilled human resources. Despite recent advances in disease diagnosis and treatment outcomes using latest technological advances in molecular biology, the global pandemic COVID-19 remains a major headache for governments across the world due to limited testing capacity and lack of appropriate treatment and vaccine. Copyright © 2020, Kathmandu University. All rights reserved.

9.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2232768

ABSTRACT

The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5'-methyl cap (m7GpppN), a 3'- and 5'-untranslated region (3'-UTR, 5'-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body's natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA-ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer's disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19's long-term neurological effects.


Subject(s)
COVID-19 , MicroRNAs , Humans , SARS-CoV-2/metabolism , MicroRNAs/genetics , Brain/metabolism
10.
Curr Med Chem ; 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2229370

ABSTRACT

COVID-19 is a contagious disease. Paxlovid, a combination of Nirmatrelvir and Ritonavir, was granted emergency use authorization by the United States Food and Drug Administration (FDA) for the treatment of COVID-19 on December 22, 2021. These are peptidomimetic coronavirus main protease inhibitors. Nirmatrelvir is a proline derivative. The present patent describes similar proline- like compounds, their preparation, use, and pharmaceutical composition, and treatment.

11.
Front Immunol ; 13: 989298, 2022.
Article in English | MEDLINE | ID: covidwho-2065518

ABSTRACT

The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , Positive-Strand RNA Viruses , Animals , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Life Cycle Stages , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins , Viral Proteins/metabolism
12.
2022 IEEE International Conference on Electrical, Computer, and Energy Technologies, ICECET 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2063237

ABSTRACT

At present, Covid-19 is posing serious intimidation to students, doctors, scientists and governments all around the world. It is a single-stranded RNA virus with one of the enormous RNA genomes, and it is constantly changing through mutation. Sometimes this mutation results in a new variant. Research showed that people who come in touch with this virus mostly they are infected with lung illness. So, recognizing Covid-19 from a Chest X-ray is one of the best imaging techniques. But another issue arises when it shows that other diseases like viral pneumonia, lung opacity are also had common symptoms like as Covid-19 and these problems also can be detected from chest X-ray images. So, in this research, we proposed a deep learning approach combining Modified Convolutional Neural Network (M-CNN) and Bidirectional LSTM (BiLSTM) with an Multi-Support Vector Machine (M-SVM) classifier for detecting Covid-19, Viral Pneumonia, Lung-Opacity and normal chest. We used the COVID-19-Radiography-Dataset to assess the results of our proposed system and compared the result with some other existing systems which show our proposed system is better than others. The accuracy of classification using the proposed method is 98.67%. © 2022 IEEE.

13.
Biomedical Innovations to Combat COVID-19 ; : 1-30, 2022.
Article in English | Scopus | ID: covidwho-2060242

ABSTRACT

Coronaviruses (CoVs) belong to a group of positive-sense single-stranded RNA viruses that have the largest genome known for a virus and use RNA as its genetic material. These viruses can infect a wide variety of animals, causing very different diseases that include common cold (humans), peritonitis (cats), hepatitis (mouse), and life-threatening pneumonia (humans). In fact, before the year 2002, most of the CoV literature focused on viruses of veterinarian interest. This changed in 2002 and 2012 with the appearance of two novel human CoVs that cause Severe Acute Respiratory Syndromes, SARS-CoV and MERS-CoV, respectively. The localized epidemics caused by these two viruses served as warning events on how zoonotic transmission of CoVs between bats (or camels) and humans could result in the formation of new viruses. Unfortunately, the research on these viruses mostly caught only the attention of the groups that either previously worked with CoVs of veterinarian interest or lived in the regions affected by SARS-CoV and MERS-CoV. © 2022 Elsevier Inc. All rights reserved.

14.
Annals of the Rheumatic Diseases ; 81:971-972, 2022.
Article in English | EMBASE | ID: covidwho-2009130

ABSTRACT

Background: Enpatoran is a selective and potent dual toll-like receptor (TLR) 7/8 inhibitor in development for the treatment of cutaneous and systemic lupus erythematosus (CLE/SLE). Enpatoran inhibits TLR7/8 activation in vitro and suppresses disease activity in lupus mouse models.1 Enpatoran was well tolerated and had linear pharmacokinetic (PK) parameters in healthy volunteers.2 As TLR7/8 mediate immune responses to single-stranded RNA viruses, including SARS-CoV-2, it was postulated that enpatoran may prevent hyperinfammation and cytokine storm in COVID-19. Objectives: In response to the COVID-19 pandemic, we conducted an exploratory Phase II trial to assess safety and determine whether enpatoran prevents clinical deterioration in patients (pts) hospitalized with COVID-19 pneumonia. PK and pharmacodynamics (PD) of enpatoran were also evaluated. Methods: ANEMONE was a randomized, double-blind, placebo (PBO)-con-trolled study conducted in Brazil, the Philippines, and the USA (NCT04448756). Pts aged 18-75 years, hospitalized with COVID-19 pneumonia (WHO 9-point scale score =4) but not mechanically ventilated, with SpO2 <94% and PaO2/FiO2 ≥150 (FiO2 maximum 0.4) were eligible. Those with a history of uncontrolled illness, active/unstable cardiovascular disease and SARS-CoV-2 vaccination were excluded. Pts received PBO or enpatoran (50 or 100 mg twice daily [BID]) for 14 days, with monitoring to Day 28 and safety follow-up to Day 60. Primary outcomes were safety and time to recovery (WHO 9-point scale ≤3). Clinical deterioration (time to clinical status >4, WHO 9-point scale) was a secondary outcome. Exploratory endpoints were enpatoran and biomarker concentrations (cytokines, C-reactive protein [CRP], D-dimer and interferon gene signature [IFN-GS] scores) assessed over time. Results: 149 pts received either PBO (n=49), or enpatoran 50 mg (n=54) or 100 mg (n=46) BID;88% completed treatment and 86% received concomitant steroids. Median age was 50 years (77% <60 years old), 66% were male, and 50% had ≥1 comorbidity (40% hypertension, 24% diabetes). Overall, 59% pts reported a treatment-emergent adverse event (TEAE) with three non-treatment-related deaths;11% reported a treatment-related TEAE. The proportion of pts in the enpatoran group reporting serious TEAEs was low (50 mg BID 9%;100 mg BID 2%) vs PBO (18%). Gastrointestinal disorders were most common (PBO 8%;50 mg BID 28%;100 mg BID 9%). The primary outcome of time to recovery with enpatoran vs PBO was not met;medians were 3.4-3.9 days. A positive signal in time to clinical deterioration from Day 1 through Day 28 was observed;hazard ratios [95% CI] for enpatoran vs PBO were 0.39 [0.13, 1.15] (50 mg BID) and 0.30 [0.08, 1.08] (100 mg BID). Mean enpatoran exposure was dose-proportional, and PK properties were within expectations. The median (quartile [Q]1-Q3) interleukin 6 (IL-6), CRP and D-dimer baseline concentration across the groups were 5.7 (4.0-13.5) pg/mL, 30.04 (11.40-98.02) and 0.62 (0.39-1.01) mg/L, respectively. Baseline IFN-GS scores were similar across groups. Conclusion: The ANEMONE trial was the frst to evaluate the safety and efficacy of a TLR7/8 inhibitor in an infectious disease for preventing cytokine storm. Enpa-toran up to 100 mg BID for 14 days was well tolerated by patients acutely ill with COVID-19 pneumonia. Time to recovery was not improved with enpatoran, perhaps due to the younger age of patients who had fewer comorbidities compared to those in similar COVID-19 trials. However, there was less likelihood for clinical deterioration with enpatoran than placebo. This trial provides important safety, tolerability, PK and PD data supporting continued development of enpatoran in SLE and CLE (NCT04647708, NCT05162586).

15.
Viruses ; 14(9)2022 08 24.
Article in English | MEDLINE | ID: covidwho-1997806

ABSTRACT

The research and development (R&D) of novel adjuvants is an effective measure for improving the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant protein vaccine. Toward this end, we designed a novel single-stranded RNA-based adjuvant, L2, from the SARS-CoV-2 prototype genome. L2 could initiate retinoic acid-inducible gene-I signaling pathways to effectively activate the innate immunity. ZF2001, an aluminum hydroxide (Al) adjuvanted SARS-CoV-2 recombinant receptor binding domain (RBD) subunit vaccine with emergency use authorization in China, was used for comparison. L2, with adjuvant compatibility with RBD, elevated the antibody response to a level more than that achieved with Al, CpG 7909, or poly(I:C) as adjuvants in mice. L2 plus Al with composite adjuvant compatibility with RBD markedly improved the immunogenicity of ZF2001; in particular, neutralizing antibody titers increased by about 44-fold for Omicron, and the combination also induced higher levels of antibodies than CpG 7909/poly(I:C) plus Al in mice. Moreover, L2 and L2 plus Al effectively improved the Th1 immune response, rather than the Th2 immune response. Taken together, L2, used as an adjuvant, enhanced the immune response of the SARS-CoV-2 recombinant RBD protein vaccine in mice. These findings should provide a basis for the R&D of novel RNA-based adjuvants.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Mice , Mice, Inbred BALB C , RNA , Recombinant Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Tretinoin , Vaccines, Subunit/genetics , Vaccines, Synthetic/genetics
16.
Cell Mol Life Sci ; 79(8): 425, 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1935748

ABSTRACT

Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.


Subject(s)
COVID-19 , Hepatitis C , Endoplasmic Reticulum/metabolism , Hepacivirus/genetics , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Virus Replication
17.
Trace Elements and Electrolytes ; 39(2):82-83, 2022.
Article in English | EMBASE | ID: covidwho-1913119

ABSTRACT

The novel coronavirus SARSCoV- 2 is causing an ongoing worldwide pandemic of COVID-19. The infection with this single-stranded RNA virus appears to be completely asymptomatic in a large fraction of people and many other patients may experience mild symptoms such as fever, cough, anosmia, and myalgia. Some patients need hospitalization and some will develop an acute respiratory distress syndrome (ARDS), and a significant subset will require treatment in the intensive care unit to provide respiratory ventilator support. Unfortunately, there is no causal curative treatment, so far. In this context, the potential prophylactic and therapeutic options for the novel SARS-CoV-2 infection and corresponding COVID-19, as well as interventions with special nutrients like zinc or vitamin D are discussed, especially due to their role in the immune system [1]. Possible drugs for the treatment of COVID-19 increase the risk of QT interval prolongation, e.g., chloroquine, hydroxychloroquine, azithromycin, lopinavir, ritonavir. QT prolongation can provoke life-threatening torsade-de-pointes arrhythmias (TdP) and sudden cardiac death. Mg deficiency and other electrolyte imbalances also belong to the known risk factors for QT prolongation and TdP. Consequently, it is recommended to obtain baseline assessment of Mg and other electrolytes and to correct deficiencies before using QT-prolonging drugs. Keeping serum potassium levels and Mg levels above 4 mmol/L and 3 mg/ dL (= 1.23 mmol/L), respectively, in COVID-19 patients treated with QT-prolonging drugs proved to be effective in preventing QT prolongation, and no arrhythmias or sudden cardiac arrest were registered. This is above the upper limit of the reference range (usually ∼ 1.1 mmol/L). In a single-center study (n = 524), a specially designed monitoring process in COVID-19 patients (with COVID-19-related medication) identified a high proportion of patients with QT prolongation (n = 103, corresponding to 19.7%). As part of the medical support, reaching Mg and potassium in the reference range was recommended [2, 3]. Administration of intravenous Mg sulfate is the therapy of choice for hemodynamically stable TdP, regardless of whether the patient is hypomagnesemic or has a normal serum Mg concentration. This may be a relevant reason why the German Federal Institute of Drugs and Medical Devices (BfArM) put Mg (parenteral) on a list with drugs whose need is greatly increased with treatment of COVID-19 patients in intensive care units [4]. On the other hand, hypomagnesemia generally is a common occurrence in intensive care patients (regardless of COVID-19) with a prevalence up to 65%, associated with an increased mortality rate, higher need for ventilator support, increased incidence of sepsis, and longer hospital stays [5]. There is increasing evidence that viral infection of the endothelial cells plays a key role in multiorgan participation and severe courses of COVID-19. This finding provides a rationale for therapies to stabilize the endothelium, in particular for vulnerable patients with pre-existing endothelial dysfunction which can be found for example in cardiovascular disease, diabetes, hypertension, obesity, all of which are associated with adverse outcomes in COVID-19. Interestingly, Mg is known to be crucial for endothelial function and its deficiency causes endothelial dysfunction with impaired endothelial-dependent vasodilation. In a meta-analysis of randomized, controlled trials (RCTs), oral Mg supplementation was shown to improve flow-mediated dilation as a marker of endothelial function. It is therefore plausible to assume that Mg deficiency further worsens the consequences of an infection with SARS-CoV-2 via induction of endothelial dysfunction. In this context, the frequent occurrence of thrombotic embolism in COVID-19 is worth mentioning. Animal and human data suggest that Mg functions as an antithrombotic agent. Hence, increased platelet reactivity and thrombosis are possible cardiovascular manifestations of Mg deficiency [6, 7]. Furthermore, increased inflammation in Mg deficiency has to be kept in mind. Experimental studies show an increased incidence of markers for inflammation in case of Mg deficiency, e.g., leukocyte and macrophage activation, pro-inflammatory molecules such as interleukin-1, interleukin-6, tumor necrosis factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and excessive production of free radicals. Generally, Mg deficiency is considered as a significant contributor to chronic lowgrade inflammation and, therefore, risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. In meta-analyses of RCTs, Mg supplementation was shown to reduce C-reactive protein levels. Whether Mg deficiency or Mg supplementation may impact the inflammatory event in COVID-19 has to be investigated in clinical studies [7, 8]. To our knowledge, there are no systematic studies so far examining Mg status in COVID-19 patients. In a pooled analysis, Lippi et al. [6] confirmed that COVID-19 severity was associated with lower serum concentrations of sodium, potassium, and calcium. Therefore, measuring electrolytes at initial presentation and monitoring during hospitalization is recommended in order to be able to take appropriate corrective measures in good time. Unfortunately, serum Mg was not determined in the studies analyzed. In the above-mentioned study of Jain et al. [3], 30.1% of the COVID-19 patients with QT prolongation showed hypomagnesemia. Conclusion: In view of the relationships described, it is plausible to assume that Mg deficiency may decrease the resistance against infection with SARS-CoV-2 and, most notably, may worsen the course of COVID-19. Hence, Mg deficiency could be a risk factor for severe COVID-19, comparable to cardiovascular disease, diabetes, chronic respiratory disease, older age, obesity, amongst others. Interestingly, Mg deficiency is often associated with these risk factors or seen as comorbidity. However, more research questions need to be addressed before definitive conclusions can be drawn [8, 9].

18.
Front Cell Neurosci ; 16: 937961, 2022.
Article in English | MEDLINE | ID: covidwho-1903089
19.
26th International Conference on Research in Computational Molecular Biology, RECOMB 2022 ; 13278 LNBI:360-362, 2022.
Article in English | Scopus | ID: covidwho-1877749

ABSTRACT

Coronaviruses are comprised of a single-stranded RNA genome that is ready to be translated by the host ribosome. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

20.
Nano LIFE ; 12(1), 2022.
Article in English | EMBASE | ID: covidwho-1854417

ABSTRACT

Nanomedicine or nanotechnology exhibits outstanding features to challenge severe health issues including pathogenic viral infections, the most culpable invaders in the present situation. The perpetual mutational pattern in viruses topped with raising resistance to drug epitomizes the current situation as a trigger to explore nanotech platforms in antiviral therapies. Referring to novel physicochemical features of nanomaterials associated with effective drug delivery, it is viewed as an ideal strategy for treatment of viral infections. The coronavirus induced pathogenesis, including MERS, SARS and SARS-CoV-2 infections, has triggered alarming and highly dangerous precedents against existence of humans. Applications of nanotechnology can serve a new direction for disinfection or treatment of viruses. Presently, various types of nanomaterials, such as nanogels, nanospheres, nanocapsules, liposomes, nanoparticles and many others, that have been investigated in vivo and in vitro for successful drug delivery, vaccination, diagnostic assay and device development with anticipation to be translated in advanced clinical practices, need a collective relook. This paper intents to contribute insightful critique of current studies on the efficacy of nanoplatforms as drug transporter, diagnostic tool and vaccine candidate against pathogenic viruses counting the highly pathogenic and incurable "coronaviruses".

SELECTION OF CITATIONS
SEARCH DETAIL